جميع روابط المواقع الرسمية التعليمية في المملكة العربية السعودية تنتهي بـsch.sa أو edu.sa
المواقع الالكترونية الآمنة في المملكة العربية السعودية تستخدم بروتوكول HTTPS للتشفير.
مسجل لدى هيئة الحكومة الرقمية برقم:
20241028333Optimal agricultural methods need precise crop health and ecological strain monitoring. This study proposes a novel data science strategy to improve crop health prediction and stress assessment. ResXceNet-HBA is a cutting-edge classification model that uses ResNet blocks, Xception modules with Adaptive Depthwise Separable Convolutions, and HBA-optimized parameters. This model uses HBA’s Dynamic Exploration-Exploitation Balance-fine-tuned Dynamic Feature Recalibration and adaptive convolutions. Imputation Weight Crop Labels (WICL) to accurately fill in missing data, Localised Feature Scaling (LFS) and Adaptive Feature Discretization (AFD) to standardize and categorize features, and the Environmental Stress Factor (ESF) to evaluate crop stress address data problems ASRFS and Crop-Specific Environmental Impact Weighting increase model performance. Our system also employs Adaptive Synthetic Resampling with Environmental Context. Using novel measures including the Crop Type Generalisation Score (CTGS) and Environmental Sensitivity Index (ESI), the ResXceNet-HBA model achieved 98.5% accuracy, 98.2% precision, 98.7% recall, and 98.4% F1-Score. These results beat ResNet, CNN, and Inception V2. The model executed in 50.9 seconds, faster than the alternatives. The confusion matrix exhibits minimal false positives and negatives, suggesting good prediction accuracy. ResXceNet-HBA’s statistics and resource optimization value increases. Precision farming and sustainable agriculture benefit from our strategy’s significant environmental stress and crop health assessments. المزيد